Building Data Analytics Solutions Using Amazon Redshift
(DAREDS)
In this course, you will build a data analytics solution using Amazon Redshift, a cloud data warehouse service. The course focuses on the data collection, ingestion, cataloging, storage, and processing components of the analytics pipeline. You will learn to integrate Amazon Redshift with a data lake to support both analytics and machine learning workloads. You will also learn to apply security, performance, and cost management best practices to the operation of Amazon Redshift.
- Course level: Intermediate
- Duration: 1 day
Activities
This course includes presentations, interactive demos, practice labs, discussions, and class exercises.
Course Objectives
In this course, you will learn to:
- Compare the features and benefits of data warehouses, data lakes, and modern data architectures
- Design and implement a data warehouse analytics solution
- Identify and apply appropriate techniques, including compression, to optimize data storage
- Select and deploy appropriate options to ingest, transform, and store data
- Choose the appropriate instance and node types, clusters, auto scaling, and network topology for a particular business use case
- Understand how data storage and processing affect the analysis and visualization mechanisms needed to gain actionable business insights
- Secure data at rest and in transit
- Monitor analytics workloads to identify and remediate problems
- Apply cost management best practices
Intended Audience
This course is intended for data warehouse engineers, data platform engineers, and architects and operators who build and manage data analytics pipelines.
Prerequisites
- Students with a minimum one-year experience managing data warehouses will benefit from this course.
- We recommend that attendees of this course have:
- Completed either AWS Technical Essentials or Architecting on AWS
- Completed Building Data Lakes on AWS
Course Content
Module A: Overview of Data Analytics and the Data Pipeline
- Data analytics use cases
- Using the data pipeline for analytics
Module 1: Using Amazon Redshift in the Data Analytics Pipeline
- Why Amazon Redshift for data warehousing?
- Overview of Amazon Redshift
Module 2: Introduction to Amazon Redshift
- Amazon Redshift architecture
- Interactive Demo 1: Touring the Amazon Redshift console
- Amazon Redshift features
- Practice Lab 1: Setting up your data warehouse using Amazon Redshift
Module 3: Ingestion and Storage
- Ingestion
- Interactive Demo 2: Connecting your Amazon Redshift cluster using a Jupyter notebook with Data API
- Data distribution and storage
- Interactive Demo 3: Analyzing semi-structured data using the SUPER data type
- Querying data in Amazon Redshift
- Practice Lab 2: Data analytics using Amazon Redshift Spectrum
Module 4: Processing and Optimizing Data
- Data transformation
- Advanced querying
- Practice Lab 3: Data transformation and querying in Amazon Redshift
- Resource management
- Interactive Demo 4: Applying mixed workload management on Amazon Redshift
- Automation and optimization
Module 5: Security and Monitoring of Amazon Redshift Clusters
- Securing the Amazon Redshift cluster
- Monitoring and troubleshooting Amazon Redshift clusters
Module 6: Designing Data Warehouse Analytics Solutions
- Data warehouse use case review
- Activity: Designing a data warehouse analytics workflow
Module B: Developing Modern Data Architectures on AWS
- Modern data architectures