IBM SPSS Modeler Foundations (V18.2) (0E069G-SPVC)

Overview

Contains PDF course guide, as well as a lab environment where students can work through demonstrations and exercises at their own pace.

This course provides the foundations of using IBM SPSS Modeler and introduces the participant to data science. The principles and practice of data science are illustrated using the CRISP-DM methodology. The course provides training in the basics of how to import, explore, and prepare data with IBM SPSS Modeler v18.2, and introduces the student to modeling.

If you are enrolling in a Self Paced Virtual Classroom or Web Based Training course, before you enroll, please review the Self-Paced Virtual Classes and Web-Based Training Classes on our Terms and Conditions page, as well as the system requirements, to ensure that your system meets the minimum requirements for this course. /terms

Audience

  • Data scientists
  • Business analysts
  • Clients who are new to IBM SPSS Modeler or want to find out more about using it

Prerequisites

  • Knowledge of your business requirements

Objective

Introduction to IBM SPSS Modeler 

• Introduction to data science 

• Describe the CRISP-DM methodology 

• Introduction to IBM SPSS Modeler 

• Build models and apply them to new data  

 

Collect initial data 

• Describe field storage 

• Describe field measurement level 

• Import from various data formats 

• Export to various data formats  

 

Understand the data 

• Audit the data 

• Check for invalid values 

• Take action for invalid values 

• Define blanks  

 

Set the unit of analysis 

• Remove duplicates 

• Aggregate data 

• Transform nominal fields into flags 

• Restructure data  

 

Integrate data 

• Append datasets 

• Merge datasets 

• Sample records

 

Transform fields 

• Use the Control Language for Expression Manipulation 

• Derive fields 

• Reclassify fields 

• Bin fields  

 

Further field transformations 

• Use functions 

• Replace field values 

• Transform distributions  

 

Examine relationships 

• Examine the relationship between two categorical fields 

• Examine the relationship between a categorical and continuous field 

• Examine the relationship between two continuous fields  

 

Introduction to modeling 

• Describe modeling objectives 

• Create supervised models 

• Create segmentation models  

 

Improve efficiency 

• Use database scalability by SQL pushback 

• Process outliers and missing values with the Data Audit node 

• Use the Set Globals node 

• Use parameters 

• Use looping and conditional execution

Detaylari Göster

Course Outline

Introduction to IBM SPSS Modeler 

• Introduction to data science 

• Describe the CRISP-DM methodology 

• Introduction to IBM SPSS Modeler 

• Build models and apply them to new data  

 

Collect initial data 

• Describe field storage 

• Describe field measurement level 

• Import from various data formats 

• Export to various data formats  

 

Understand the data 

• Audit the data 

• Check for invalid values 

• Take action for invalid values 

• Define blanks  

 

Set the unit of analysis 

• Remove duplicates 

• Aggregate data 

• Transform nominal fields into flags 

• Restructure data  

 

Integrate data 

• Append datasets 

• Merge datasets 

• Sample records

 

Transform fields 

• Use the Control Language for Expression Manipulation 

• Derive fields 

• Reclassify fields 

• Bin fields  

 

Further field transformations 

• Use functions 

• Replace field values 

• Transform distributions  

 

Examine relationships 

• Examine the relationship between two categorical fields 

• Examine the relationship between a categorical and continuous field 

• Examine the relationship between two continuous fields  

 

Introduction to modeling 

• Describe modeling objectives 

• Create supervised models 

• Create segmentation models  

 

Improve efficiency 

• Use database scalability by SQL pushback 

• Process outliers and missing values with the Data Audit node 

• Use the Set Globals node 

• Use parameters 

• Use looping and conditional execution